Control Rules for Reactive System Games

*

Matteo Slanina
Stanford University, Computer Science Department
Stanford, CA 94305-9045
E-mail: matteo@cs.stanford.edu

Abstract

This paper presents a deductive approach to the con-
trol problem for infinite-state reactive systems. It de-
scribes three proof rules, sound and relatively complete
for formulas in the first two levels of the hierarchy of
linear temporal logic—safety and response. The con-
trol conditions forming the premises of the rules are
113 first-order formulas. If a subroutine can prove their
validity constructively, the extracted programs can be
used to synthesize a winning strategy for the controller.

Introduction

Although the synthesis problem for concurrent sys-
tems interested researchers before the problem of their
verification (Church 1962; Rabin 1969), it later suc-
cumbed to the wide spreading of applications of the
latter. The main reason is the high computational
complexity associated with all forms of finite-state re-
active program synthesis: completeness for 2EXPTIME
is a standard lower bound (Pnueli & Rosner 1989b;
Kupferman & Vardi 1999; 2000).

Nevertheless, among the numerous variations of the
reactive program synthesis problem (Anuchitanukul
1995; Kupferman & Vardi 1999), there is at least one
area wherein solutions are practically needed and has
been the subject of active research in recent years: con-
trol and the synthesis of controlling strategies.

Consider a system made of many concurrent pro-
cesses running in parallel. Some processes have a pro-
gram that is fixed, either by another designer, or be-
cause it is the most realistic model of some physical
process. The control problem is to design, given appro-
priate restrictions, programs for the remaining modules,
in such a way that the interaction of all components
obey some given properties, specified by a formula in
some formal language—typically temporal logic. The

*This research was supported in part by NSF(ITR)
grant CCR-01-21403, by NSF grant CCR-99-00984-001, by
ARO grant DAAD19-01-1-0723, and by ARPA/AF con-
tracts F33615-00-C-1693 and F33615-99-C-3014.

synthesized controller is essentially a winning strategy
in an infinite game, and the control problem is inti-
mately related to that of solving infinite games (Pnueli
& Rosner 1989a; Zielonka 1998).

The well-known approaches to the control problem
are algorithmic and can only be applied to finite-state
systems (Anuchitanukul 1995; Kupferman et al. 2000).
This paper uses deductive techniques for proving con-
trollability of infinite-state reactive systems. I intro-
duce a general model, which extends fair transition sys-
tems (FTS) (Manna & Pnueli 1991), and then present
a series of deductive rules that allow us to reduce
the question of controllability—with respect to certain
classes of properties—to validity problems of the un-
derlying assertion language. This mirrors similar tech-
niques for verification of ¥Ts’s. Whereas for verifica-
tion of FTS’s the resulting verification conditions are
quantifier-free, part of the control conditions resulting
from our techniques are I19 formulas, i.e., of the form
VZ 3y (&, §). Overall, thus, the methods outlined show
how to reduce control of reactive systems to small func-
tional synthesis problems. These can be solved with
standard constructive theorem proving methods, or, in
cases where the assertion language permits it, by spe-
cialized decision procedures.

If the assertional prover succeeds and returns syn-
thesized functions that realize the conditions, each rule
allows to synthesize, from these, a program for the con-
trolling process of the reactive system.

I prove relative completeness of the proposed rules:
if a system is controllable with respect to a property of
a certain class, then this fact can be proved by suitable
premises of the respective rule, valid with respect to
the assertion language. The assertion language must be
powerful enough to enable encoding of finite sequences
and contain fixpoint operators. This is exactly the
language necessary to prove completeness of the cor-
responding rules for verification. I also show how, in
some special cases, relative completeness can be estab-
lished for a less powerful language that does not contain

fixpoint operators.

The completeness proofs, and much of the intuition
behind the rules, rely on results about games on finitely
colored graphs (Zielonka 1998).

The rest of the paper is organized as follows: First, we
introduce the computation model, the temporal logic
used as specification language, and other relevant no-
tation. Although all the notation used in the paper is
shortly described, the section is very probably not self-
contained, but a previous acquaintance with transition
systems and the temporal logic LTL is necessary; point-
ers to the relevant literature are found in the references.
In the next, major, section, the deductive rules are in-
troduced, together with proofs of soundness and some
very short examples. Some of the completeness proofs
are given in the appendix, after a conclusion and a bib-
liography sections.

Computational Model and Specification

Game transition systems. Our computation model
is an extended version of Manna and Pnueli’s fair transi-
tion systems (Manna & Pnueli 1991), that we call game
transition systems (GTS). It is fairly general, allowing to
model both synchronous and asynchronous concurrency
and different kinds of fair scheduling. For another, sim-
ilar, model appearing in the literature see (Alur, Hen-
zinger, & Kupferman 1997).

We assume an underlying assertion language, a typed
first-order language with standard interpretation for the
types. For example, the language of Peano Arithmetic,
or a language with integers and arrays with their stan-
dard interpretations, would serve our purpose. The lan-
guage can also have least and greatest fixpoint opera-
tors on positive formulas, and this will be instrumental
in the proofs of relative completeness. Given an inter-
pretation for the variables of the assertion language, or
state, s, we write s = p, or “s is a p-state”, to say that
the assertion formula ¢ is true in state s.

A game transition system consists of states and tran-
sitions. States are modeled as assignments to a prede-
fined set of logical variables in an underlying assertion
language. Transitions model concurrently executing
processes. In this paper we consider systems with two
players: Player 2’s behavior will be fixed in advance,
while we are free to synthesize behaviors for Player 1.
The transitions are partitioned between the two play-
ers and there is a third, hidden, player, the Scheduler,
which repeatedly chooses an enabled transition and al-
lows the player that owns that transition to move to an-
other state. We shall assume a worst-case scenario, that
is, our goal will be to synthesize a strategy for Player 1
that realizes the goal independently of the choices of
Player 2 and the Scheduler; in other words, we assume
Player 2 and the Scheduler collaborate against Player 1.

This is contrary to the commoner approach, where the
controller is always a single process (transition). Allow-
ing the controller to consist of more processes, whose
scheduling is controlled by an adversary—although an
adversary restricted by fairness—does not add to the
complexity of the proof rules, while allowing to describe
questions like, e.g., “What happens to a protocol when
two of the participating processes misbehave, while all
others adhere to the protocol? Can the two force the
system to ...7”

Formally, a ¢Ts G is a 6-tuple (V,0,71,75,7,C),
where:

e 1 is a finite set of typed variables in the underlying
assertion language.

e O isan assertion on V characterizing the initial states
of the GTs.

e 71 and 75 are finite sets of transitions, for Players
1 and 2, respectively. We shall denote 7; U 75 by 7.
A transition 7 € 7 characterizes a binary relation on
states, represented by an assertion 7(V, V') on vari-
ables of V' and primed copies thereof. For two states
s and §', the meaning of s, s’ b 7(V, V') is that tran-
sition 7 can lead from s to s’ in a single step. For
example, if 7 is |x — /| = 1, then 7 is a transition
that, if taken, either increases or decreases the value
of z by 1.

e 7 and C are subsets of 7, denoting the fairness con-
ditions. A transition 7 € J, called just, must even-
tually be scheduled if it is continually enabled from
some point of an execution on. A transition 7 € C,
called compassionate, must eventually be scheduled
if it is enabled infinitely many times, even if not con-
tinually. Clearly, every compassionate transition is
also just.

Example. The following GTS, FLOW, models a turn
game between two players that alternatively change a
real-valued parameter z. Player 1 can change the value
by at most 2 in each step, Player 2 by at most 1. (Think
of it as a random flow, between —1 and 1 unit per hour
in value, going in or out of a reservoir, and Player 1
being able to correct the value by opening some valves
once per hour.) The GTs is defined on an alphabet of
two variables, x : real and turn : {1,2}, with the initial
condition being © : z = 0, and the sets of transitions
Ty ={n}, To = {2}, where

T turn=1Aturn’ =2 A\ |2’ — x| <2,
Ty turn=2Aturn’ = 1A |2' — 2| < 1.

Fairness conditions are clearly irrelevant here, so we can
take J =C = 0.

A state is an assignment of values to the variables in
V. We assume standard interpretations for the types,

e.g., integers, arrays, etc. The collection of all states is
denoted by X. A transition 7 is enabled on a state s if
some state s’ can be reached from s through 7. This
property is expressed by the assertion En(7), defined
as AV'.7(V,V’). Clearly, a transition 7 is enabled on
s if and only if s E En(7). We shall sometimes write
Tak(t) (for “taken”) to mean 7(V,V").

We always assume that GTS’s are non-blocking, i.e.,
there is some enabled transition in every state. Most
systems are non-blocking by nature and need no check,
but the assumption is not restrictive in any case, since
being non-blocking is a standard invariance property,
and can thus be checked by standard verification meth-
ods that are assumed by this paper.

A computation, or play, of G is a sequence of states
and transitions o : sg sy B sy 2. such that

® 5y = O;

e s;,8;4+1 IE 7; for all ¢ (this stays, more explicitly, for
V/si,V'[sixa] E T(V,V'));

o if 7 € J and s; I En(7) for all i > n, then 7; = 7 for
some i > n (justice);

o if 7 € C and s; F En(7) for infinitely many ¢ > n,
then 7, = 7 for some i > n (compassion).

A strategy, or program, for Player 1 (and analogously
for Player 2) is a partial function f : ¥* x 73 — X
such that f(o,7) is defined whenever 7 is enabled on
the last state, s, of o, and then s, f(o,7) ¥ 7; that
is, the strategy returns one of the 7-successor states
according to. A play o is compatible with a strategy
fif sit1 = f(sos1...8i,7;) whenever 7, € 7T;. If a
strategy is memoryless, i.e., it only depends on the last
state of a computation segment, we shall write, with
abuse of notation, f: X x 73 — X.

Aars G =(V,0,T1,75,7,C) can be thought of as
an FTS G = (V,0,7,7,C), disregarding the player dis-
tinctions. This identification allows us to use the proof
techniques for FTS’s on G. Any LTL formula holding of
G clearly holds of any play of G. This is useful because
we can prove LTL properties (especially invariants) and
use them as auxiliary lemmas in proofs of control con-
ditions.

Specification language. As a specification language
we use LTL, the linear time temporal logic, plus some
notational conventions from ATL (alternating temporal
logic).

An LTL formula describes a property of an infinite
sequence of states, and there are operators to talk about
the future and the past of the sequence with respect
to a given reference point. Formally (in the notation
of (Manna & Pnueli 1995)):

e every assertion is an LTL formula;

e if ¢ and ¢ are LTL formulas, so are =@, p A, Ogp
(i.e., ¢ at the next time step), O (i.e., ¢ at the
previous time step), pU (i.e., p until), and p S
(i.e., @ since).

Given a sequence o : Sg, S1, S2, . . . of states, truth of an

LTL formula, ¢, at position i in o, denoted (o, 1) F ¢, is

defined as:

o (0,i) Epif s; E p, for a state formula p;

o (0,i) Fop if (0,4) ¥ ¢;

o (0,i)FpAYif(0,i) F ¢ and (0,i) E 9

(0,4)
(0,1)
o (0,i)FEQpif (g,i+1)FE ;
(0,4)
(0,4)

o
o

0,i) F @Oy ifi>0and (0,i—1) F ¢;

0,1) E o U if there is a j > 4 such that (o, j) F 1,
and (o,k)Epforallke {i,i+1,...,5—1}

(0,i) E ¢ S if there is a j <4 such that (o,j) F 1,
and (o,k)Epforallke {j+1,j+2,...,i}.

We write 0 F ¢ for (0,0) F ¢. The abbreviations
O (eventually o) and [Je (henceforth ¢) stand for
TRUE U ¢ and ~{>—p, respectively. An LTL formula is
a future (resp. past) formula if it does not contain any
past (resp. future) operator: ©,S (resp. O,U, 1,).

We say that Player 1 can win on the GTS G with win-
ning condition ¢, where ¢ is an LTL formula, if there
is a strategy, f, for Player 1 such that o F ¢ for all
plays o consistent with f. Following (Alur, Henzinger,
& Kupferman 1997), we write G F (1) if this is the
case. For example, G F (1) > (state = checkmate) de-
notes that Player 1 has a strategy to force the game
to eventually reach a state where variable state equals
value checkmate.

A more powerful logic to talk about games and strate-
gies is ATL (Alur, Henzinger, & Kupferman 1997). ATL
extends LTL by allowing arbitrary nesting of {(A) and
LTL operators, where A is a set of players. The for-
mula {A)e means “the players in A have a collabora-
tive strategy to force (, no matter what the remain-
ing players do”. Thus, our {(1)) corresponds to {{1}),
and (@) corresponds to the CTL* universal path quan-
tifier A.

In this paper we shall only use the (1)) operator—and
never in nested form—and the {(())) operator, which, for
notational convenience, we shall generally omit: thus, if
a part of the formula is not prefixed by (1)), it should be
interpreted as evaluated in é, or, equivalently, as being
prefixed by (@)—i.e., the formula predicates over all
computations. For example, a strong response formula
is of the form [J(p — (1)< >q), for p and ¢ state formu-
las. In full ATL it would be written () (p— (1) q),
and it holds in a GTs G if from all reachable p-states
Player 1 has a strategy to reach a g-state.

Premises of rules, if not starting by any strategy or
temporal operator, should always be considered pre-

fixed by (0) .

Hoare triples & co. Some abbreviations will make
our notation much more manageable.

For a state formula p, let p’ be a copy of p where all
variable names have been primed. For a past formula
©, we define ¢’ as

e (—p) =-(¢);
e (pAY) = (¢) N[
e (Oy) = ¢;

(pSY) = ' V(K NpSY).
Intuitively, " denotes the formula ¢ evaluated at the
next state instead of the current one.

A (universal) Hoare triple {¢} 7 {9}, for past formu-
las ¢ and 1 and transition 7, is defined as

YWV.o(V) = VYV .7 (V, V') = ' (V).

It is well-known that if G F [1{¢} 7 {¢} (that is, in full
ATL notation for the last time, G F (0){e} 7 {v'})
and o is a p-computation prefix of G ending in a state
s, then o - s’ E 1 for every state s’ reachable from s
through 7.

In (Sipma 1999) and (Bjgrner et al. 2001), the
authors introduced a variant called ezistential Hoare
triples, which we use with a slight modification. An
existential Hoare triple {¢} 73 {¢} is the formula

YV. (V) A En(r)(V) — V. 7(V, V') A/ (V).

It is easy to see that if G F [J{p}73{¢} and o is a
p-computation-prefix of G ending in a state s, where 7
is enabled, then there is a 7-successor s’ of s such that
o-s' Eq.

Finally, we take the control Hoare triple {o}} 7 {¢}
to mean {¢}7{¢Y}, if 7 € Ty, or {p}rI{Y}, if 7 €
71 (remember our objective is to find a strategy for
Player 1). From the previous two observations we con-
clude that if G F Ofe} 7 {} then Player 1 has a
(one-step) strategy, f, such that, from every p-segment,
if 7 is taken and the computation is extended compati-
bly with f, the extended segment satisfies 1 at the last
position.

The abbreviation {¢} 7 {v} means

{7 v} forall T €T,

and analogously for universal and existential Hoare
triples.

Rules for Control

Any LTL property is equivalent to a canonical form de-
scribed in (Manna & Pnueli 1989; 1991). LTL properties
can be classified into the following hierarchy:

e safety: [Jp, for p a past formula;
e response: [(p — <q), for p and ¢ past formulas;

e reactivity: A, (O p; V <OOgs), where p;, i, for
i €{1,...,n}, are past formulas.

In (Manna & Pnueli 1989), the authors give proof
rules for the verification of each class of properties over
FTS’s. We want to extend their results by showing how
to prove controllability of a GTS with goal {(1))¢o—where
(is a property in one of the above classes—or some
variations thereof more specific to game properties.

To save space and ease exposition, we assume in most
proofs that p and ¢ are state formulas. When not oth-
erwise noted, the results hold for the general case of
them being past formulas, with minor changes in the
proofs. An effective alternative to using past formulas is
to augment the program with history variables (Manna
& Pnueli 1989; 1995) and thus transform the problem
into an equivalent one with only future formulas. This
can be done in control in the same way as it is done in
verification.

Safety. The well-known method to prove that an FTS
S satisfies some invariance property [Jp is to find a
strengthening of p, say ¢, that is preserved by all tran-
sitions of S. The resulting rule, which can be thought
of as a form of induction, can be written as

INV:
00—y
{0} T {¢}
Y—p
SEp

where the premises are, as usually, to be proved with
respect to S. This rule is sound and complete for prov-
ing all invariance properties of the system, relatively to
validity in the underlying assertion language.
Analogously, to prove that G £ {1)[Jp, it suffices to
find an assertion @, stronger than p, that is preserved by
any move of Player 2 and can be preserved by Player 1
when he is scheduled to move. This idea gives us the
following rule:
INV-CONTROL:
00—y
[} T o)
Y—p
GE(1)Op

Example. Consider the GTS, FLOW, of our first ex-
ample, and suppose we want to prove that FLOW F
(1)O(Jx| < 1). Then we can choose the strengthening
© to be

o:(turn=2A]z| <1)V (turn=1Az =0).

Theorem 1 (Soundness of INV-CONTROL). If the
premises of INV-CONTROL are G-state valid, then the
conclusion holds.

Proof. Assume the premises hold. Let f be the follow-
ing (memoryless) strategy for Player 1:

f(s,7) = if sis a reachable p-state,
then some s’ such that s’ I= ¢,
else an arbitrary state.

The function f is well-defined because of the G-validity
of the verification conditions. Any play compatible with
f consists of p-states only, and therefore, but the third
premise of INV-CONTROL, of p-states only, which proves

(1)0Op. O

The following theorem is proved in the appendix.

Theorem 2 (Relative completeness of
INV-CONTROL). INV-CONTROL is complete rela-
tively to assertional validities, i.e., if G E {1)[p, then
there is an assertion ¢ such that the premises of rule
INV-CONTROL can be proved from assertional validities.

If p is a past formula, the results still hold, by allow-
ing ¢ to also be a past formula.

Response. An LTL response formula is of the form
O(p— <q), with p and ¢ past formulas in general, but
for now we assume they are state formulas. To this class
belong, for example, formulas expressing reachability
properties, termination of programs, response to single
stimuli.

Contrary to the case of invariance, there are two pos-
sible interpretations of the response class into control
problems. The first one, which we shall call weak re-
sponse, can be expressed by the formula (1)](p —
{>q). The second one, strong response, is expressed by
O(p — (1)<q). Player 1 can win a strong response
game if he has a strategy to guide the game into a ¢-
state from any reachable p-state. To win a weak re-
sponse game, on the other hand, less is required from
him: he can, for example, use a strategy that keeps the
game into (—p)-states forever, if he has one.

We shall now deal with these two kinds of games sep-
arately. As for the case of verification, if controllability
depends on compassion, some of the control conditions
will be simpler temporal control problems—precisely,
strong response problems.

Two important issues arise that were not present in
invariance problems: the first, dependence of the prop-
erties on fairness conditions, was already present in ver-
ification. The other, the existence or lack of memoryless
strategies, is peculiar to control.

Strong response. Suppose we are given a GTS G =
(V,0,71,75,7,C) and a strong response formula ¢ :
O(p— (1) <q). Extending the F-RESP rule of (Manna
& Pnueli 1989), we introduce the rule S-RESP-CONTROL.

Let 71, ..., Tn be a list of the just and compassionate
transitions of G. To apply the rule, we need to find
auxiliary properties ¢, ..., @,,—one @; corresponding
to one 7;—and a ranking function ¢ : ¥ — A, mapping
states into the domain of a well-founded order (A, =<).
Let ¢ be an abbreviation for ¢1V---Vp,,. (As a special
case, if JUC = (), we are allowed to choose ¢ as an
auxiliary property.) Then we have the rule

S-RESP-CONTROL:
pP—=qVe

For all ; € J UC:
floind=altT{qgVv(pAd<a)V(pind=Za)}
foind=alriflaviend<a)l

if 7; € J,
wi —qV En(r;)
if T GC,
G EOpiAnd=a— (1) gV (pAd <a)
V(En(r) ANpi Ao = a)))
GEOP— (1)<a)

Tt is sufficient that the premises (all but the last) hold
in all reachable states of G, i.e., that they are G-state
valid. In the last premise, G* is identical to G, apart
from the fact that transition 7; is replaced by 7;, where

TV VY =1V, V)N (V)AS(V) < a,

and 7; (or, 7;) is taken out of C (made an unfair tran-
sition). Thus the last premise has to be proved with
respect to a GTS with one compassionate transition less
than the original one, and there is no circularity in the
rule.

Intuitively, 0 is a ranking function that Player 1 can
guarantee never to increase until a g-state is reached.
Moreover, for any plateau in the computation, i.e.,
segment where 0 stays constant, some ; must hold
throughout the time the computation stays on the
plateau. This ensures that, by fairness, 7; will even-
tually be taken, making ¢ finally decrease.

Example. Consider once again the GTS FLOW and sup-
pose, this time, we want to prove FLOW F [J{1) <> (z =
0), i.e., O(true — (1) (x = 0)). Since J = C = 0,
we are allowed to choose an invariant ¢ without having
distinguished ¢1, ..., ©m. We then must choose (A, <)
and a ranking function §. The control conditions be-
come

O(true — @)
{oANd=a}rF{z=0V(pAd=<a)}
{ond=atr{z=0V(pAd=<a)}

It is easy to check that, choosing ¢ to be true, the well-
founded domain to be (A4, =) = (N, <) x ({1,2}, <),
with the product ordered lexicographically, and § to be
(||z|] + turn, turn), makes all three control conditions
assertionally valid.

Theorem 3 (Soundness of S-RESP-CONTROL). If the
premises of S-RESP-CONTROL are valid with respect to
G, then the conclusion is valid with respect to G.

Proof. Assume the premises hold with respect to G.
Then we have, from the last premise, one substrategy
for each pair (i,a), for i € {1,...,|C|} and a € A. We
define a winning strategy, f, for Player 1. When some
particular conditions are satisfied, the player will stop
playing f and play substrategy (i, a) instead, until some
other condition is reached; at that point, Player 1 re-
sumes playing f:

f(s,7) =

if s is not a p-state, then irrelevant; otherwise,

if there is a g¢-state, s’, reachable from s via T,
then s’; otherwise,

if there is a p-state, s”, reachable from s via 7 and
such that 6(s”) < 6(s), then s”; otherwise,

if 7, € J, then a p;-state, s, reachable from s via 7
and such that 6(s”") < 4(s);

if 7, € C, play substrategy (i,d(s)) until reaching a
gV (pANd=<a)V (En(r;) Ap; Ad < a)-state,
then start playing f again.

The function f is well-defined because of the G-validity
of the verification conditions.

We consider a play, o : sg -3 s, — ---, compatible
with f and its substrategies, and a position ¢ such that
s; I p but the computation suffix o : s; —» Sit+1 T
consists of (—g)-states only, and try to derive a contra-
diction.

Since < is well-founded, there must be a minimal
value, a, that § assumes on the states of o that are not
internal to the substrategies. Let j > ¢ be a position
such that d(s;) = a. It must be the case that s; = ¢,
for some k such that 7, € J UC. From the control con-
ditions and the fact that a is minimal it follows that 7
is never taken in o7, apart, possibly, during the execu-
tion of a substrategy. In case 1, € C, o is a computation
of G¥ as well. The control conditions ensure that 7 is
enabled continually, if 74, € J, or infinitely many times,
if 7, € C, on ¢7. In both cases, since ¢ is a fair com-
putation, 7, must eventually be taken. For 7, € C, in
particular, 7, must be taken in a state where p A0 =< a,
by definition of G*. In any case, when 7 is taken, §
decreases, contradicting the minimality of a. O

The following theorem is proved in the appendix.

Theorem 4 (Relative completeness of
S-RESP-CONTROL). Rule S-RESP-CONTROL is com-
plete relatively to assertional walidities, i.e., if
G F O — (1)< q), then there are assertions
D1y Om, 6 well-founded order (A, <), and a ranking
function ¢ > — A—expressible in the assertion
language—such that the premises of rule INV-CONTROL
can be proved from state validities.

As for invariance, the rule can be used with p, q, ¢;,
1 past formulas and § depending on the past, as well.

Weak response. The rule to prove weak response
properties is similar to the one for strong response. The
difference is that we have an additional auxiliary for-
mula . Intuitively, ¥ denotes computation segments
where all occurrences of p in the past have already been
followed by a q. Player 1 maneuvers in p-segments, try-
ing to decrease d, as before, but, when all past requests
(p) have been granted (g), he is also allowed to wander
into i-segments.

W-RESP-CONTROL:

O—pVy

{3 T {e vl

PAY—=qV o,
and, for all 7, € JUC,

foind=a} T{(aN(pVY))V(pAd<a)

V(gi N6 < a)}

foind=alrifan(eVvy))Viend=<a)l
If T S j,

wi —qV En(r)
If r, € C,
G'FOpi Ao =a— ()N (9 V)

V(pAd <a)V (En(t) Np; Ao =< a)))

GE(L)OP— a)

G' is defined as in S-RESP-CONTROL.

Rule W-RESP-CONTROL is sound and complete for
proving controllability with respect to weak response
properties. The proofs are similar to those for strong
response, but they are omitted due to space limitations.
A caveat is that, even if p and ¢ are state formulas, we
may have to let ¢ and ¢ be past formulas for complete-
ness to hold.

Conclusions and Related Work

This paper shows how it is possible, through deductive
rules, to reduce some important classes of control prob-
lems for reactive systems to problems of validity in an
underlying assertion language. The salient point of the
approach is its capacity to deal with infinite-state sys-
tems; another way to deal with infinitely many states in
control, based on abstraction, is reported in (Henzinger
et al. 2000).

Each of the rules presented can be recast in terms of
verification (control) diagrams, as in (Manna & Pnueli
1994). This alternative formulation, which is still sound
and complete, usually allows for a more intuitive, visual
presentation of the structure of the proof. Because of
space limitations, I defer a detailed exposition of control
diagrams to an extended version of the paper.

Extensions to the present research will involve ex-
tending the class of properties to higher classes of the
LTL hierarchy, i.e., reactivity properties, and possibly to
more complex ATL properties. Diagrams are expected
to be instrumental for the widest generalization. A gen-
eral technique for the verification of LTL properties was
given in (Manna et al. 1998): a generalized version of
verification diagrams is there proved sound and rela-
tively complete for the proof of any LTL property valid
over an FTS. A similar result, for control of LTL or ATL
properties over GTS’s, can be expected as a possible fi-
nal goal in this line of research. The final value of the
proof method will, of course, rest on its applicability to
serious examples and case studies.

Last, but not least, the proof rules depend heavily on
being able to prove the control conditions, which are
small functional synthesis problems. They will greatly
benefit from advances in constructive theorem proving
and decision procedures.

Acknowledgments

I am grateful to Bernd Finkbeiner, Tom Henzinger, Zo-
har Manna, César Sanchez, Sriram Sankaranarayanan,
and Henny Sipma for helpful comments on an early
draft of this paper.

References

Alur, R.; Henzinger, T. A.; and Kupferman, O. 1997.
Alternating-time temporal logic. In Proc. 38th IEEE
Symp. Found. Comp. Sci., 100-109. An extended
version appeared in Compositionality— The Significant
Difference, LNCS 1536, pp. 2360, Springer, 1999.

Anuchitanukul, A. 1995. Synthesis of Reactive Pro-
grams. Ph.D. Dissertation, Computer Science Depart-
ment, Stanford University.

Bjgrner, N. S.; Manna, Z.; Sipma, H. B.; and Uribe,
T. E. 2001. Deductive verification of real-time systems
using STeP. Theoretical Computer Science 253:27-60.

Church, A. 1962. Logic, arithmetic and automata.
In Proceedings of the International Congress of Math-
ematicians, 23-35. Djursholm, Sweden: Institut
Mittag-Leffler.

Henzinger, T. A.; Majumdar, R.; Mang, F.; and
Raskin, J.-F. 2000. Abstract interpretation of game

properties. In Proc. 7th Intern. Static Analysis Symp.
(SAS), volume 1824 of LNCS, 220-239. Springer.

Kupferman, O., and Vardi, M. Y. 1999. Church’s prob-
lem revised. The Bulletin of Symbolic Logic 5(2):245—
263.

Kupferman, O., and Vardi, M. Y. 2000. p-calculus
synthesis. In Proc. 25th International Symposium on
Mathematical Foundations of Computer Science, vol-
ume 1893 of LNCS, 497-507. Springer.

Kupferman, O.; Madhusudan, P.; Thiagarajan, P.;
and Vardi, M. 2000. Open systems in reactive en-
vironments: Control and synthesis. In Proc. 11th Int.
Conf. on Concurrency Theory, volume 1877 of LNCS,
92-107. Springer.

Manna, Z., and Pnueli, A. 1989. Completing the tem-
poral picture. In Ausiello, G.; Dezani-Ciancaglini, M.;
and Ronchi Della Rocca, S., eds., Proc. 16th Intl. Col-
loq. Aut. Lang. Prog., volume 372 of LNCS, 534-558.
Springer. Also in Theoretical Computer Science.

Manna, Z., and Pnueli, A. 1991. The Temporal Logic
of Reactive and Concurrent Systems: Specification.
New York: Springer.

Manna, Z., and Pnueli, A. 1994. Temporal verification
diagrams. In Hagiya, M., and Mitchell, J. C., eds.,
Proc. International Symposium on Theoretical Aspects
of Computer Software, volume 789 of LNCS, 726-765.
Springer.

Manna, Z., and Pnueli, A. 1995. Temporal Verification
of Reactive Systems: Safety. New York: Springer.

Manna, Z.; Browne, A.; Sipma, H. B.; and Uribe, T. E.
1998. Visual abstractions for temporal verification. In
Haeberer, A., ed., Algebraic Methodology and Software
Technology (AMAST’98), volume 1548 of LNCS, 28—
41. Springer.

Pnueli, A., and Rosner, R. 1989a. On the synthesis of
a reactive module. In Proc. 16th ACM Symp. Princ.
of Prog. Lang., 179-190.

Pnueli, A., and Rosner, R. 1989b. On the synthesis
of an asynchronous reactive module. In Proc. 16th
Intl. Colloq. Aut. Lang. Prog., volume 372 of LNCS,
652-671. Springer.

Rabin, M. O. 1969. Decidability of second order the-
ories and automata on infinite trees. Trans. Amer.
Math. Soc. 141:1-35.

Sipma, H. B. 1999. Diagram-Based Verification of Dis-
crete, Real-Time and Hybrid Systems. Ph.D. Disser-
tation, Computer Science Department, Stanford Uni-
versity.

Zielonka, W. 1998. Infinite games on finitely coloured
graphs with applications to automata on infinite trees.
Theoretical Computer Science 200:135-183.

Appendix: Relative Completeness

Games on finitely colored graphs. All our com-
pleteness theorems rest on results on finite memory de-
terminacy of GTS games. These results can be proved
by translating the control problems into games on
finitely colored graphs. We now review the basic no-
tation and results that we shall use, following (Zielonka
1998).

An arena (or game graph) is a (possibly infinite)
bipartite graph whose nodes are colored with col-
ors from a finite set. Formally, an arena is a tuple
(V1, Vo, E,C, ¢), where E C (V1 x Vo) U (Va x V1), for all
v € V7 there is a v’ € V; such that (v,v') € E, and sim-
ilarly for vertices in V5. We write V for V3 UV5;. The set
C is a finite nonempty set of colors and ¢: V — C'is a
coloring function. Zielonka deals with partial coloring
functions, too, but we shall only need totally colored
graphs in this paper.

A game is played by players alternatively moving a
token from a vertex to an adjacent vertex—Player i
moves at vertices in V;—thus generating an infinite se-
quence of vertices. The winner is determined solely on
the base of the set inf of colors that appear infinitely
often in this infinite sequence. A Muller winning condi-
tion is a partition (i, F») of 2¢. Player i wins if, and
only if, inf e F;.

The main result of (Zielonka 1998) is that for every
such game there is a partition (W7y,Ws) of the state
space such that Player ¢ has a finite memory strategy
from each vertex in W;. Moreover, if F; can be ex-
pressed in a special form called extended Rabin condi-
tion, then Player ¢ has a memoryless winning strategy
from every vertex in W;.

We can translate a GTS into a colored arena. We
define V' to be ¥ U (X x 7). The two players of the
game graph represent Player 1 of the GTS, on one side,
and Players 2 and Scheduler, on the other. We call
the second player simply Player 2 when the context
is clear enough. We define Vi = ¥ x 7; and V5 =
YU(XxT3). The edges are s — (s, 7) for all 7 such that
s I En(7), and (s,7) — s’ for all s’ such that 7(s,s’).
This arena, which is not bipartite, can be easily made
such by adding dummy nodes, to be colored with the
same color of their predecessors.

This basic game graph then undergoes further modi-
fication and coloring depending on the control property
to check. The set of colors, C, will in general be the
support of the Boolean algebra generated by some finite
set of assertions, taken among the assertions appearing
in the property to be checked, plus, possibly, assertions
of the form En(7) or Tak(r), for 7 € J UC. The col-
oring function is then the obvious one. The assertion
Tak(T) is taken to be true only in the vertices (s, 7), for

some s € . For example, if the chosen assertions are
“>0", “En(1)”, and “Tak(T)”, where En(7) isx =0
(mod 2), then

c(z:4)=“c>0" A “En(r) A=“Tak(T)”,
c({x:4,7)) = “c>0" A“En(1)” A “Tak(T)”.

It is important to notice that the constructions of W1,
Ws, and winning strategies in (Zielonka 1998) are effec-
tively representable in the assertion language. More-
over, the game graph can be easily expressed from the
representation of a GTS. Thus, if we are able to capture
the control problem by an appropriate coloring of the
graph, Zielonka’s theorems give us effective presenta-
tions of winning sets and winning strategies, which we
can use in completeness proofs.

Invariance.

Theorem 2. Rule INV-CONTROL is complete relatively
to assertional validities, i.e., if G E (1) [p, then there
is an assertion @ such that the premises of rule INV-
CONTROL can be proved from state (not relative to Q)
validities.

Proof. Remember we assumed the assertion language
is powerful enough to encode finite sequences and have
least and greatest fixpoint operators. We can easily
modify the game graph construction sketched above
(color the graph with two colors, p and —p, cut all
successors of (—p)-vertices and replace them with self-
loops) to capture the invariance control problem. It
follows that the states of G' can be partitioned into two
sets, W1 and Ws, such that Player 1 has a memoryless
strategy, f, defined on every state of Wy, that allows
him to maintain p forever, whilst Players 2 and S have
a cooperative memoryless strategy, g, defined on each
state in Ws, that allows them to reach a —p state no
matter what Player 1 does. Moreover, W7 can be ex-
pressed in the assertion language, simply as the greatest
fixpoint

Wi(V)=vXpA [\ (En(r)—3V'.r AX(V))
T€T

AN\ (V= X (V)

TET:

It is easy to check that, taking ¢ to be W7, the premises
of the rule are valid. O

In the later completeness proofs I shall not give the
exact expressions of the winning sets and strategies any
more, but simply argue that the proofs of the theorems
about existence of memoryless/finite memory winning
strategies only use fixpoint constructions, weakest pre-
conditions and other operators representable in the lan-

guage.

The assertion language needed in the previous com-
pleteness proof is complex. Completeness for the analo-
gous rule for verification, as shown in (Manna & Pnueli
1989), does not require fixpoint operators. On the other
hand, fixpoints are needed for completeness of every
other class of rules already in verification. As we shall
see, we do not need to extend the language farther for
other classes of control problems.

In some special cases, we can prove completeness of
INV-CONTROL with respect to a language without fix-
points.

Theorem 5. Let G be a GTS such that every T € T
is finitely branching, i.e., the set {s' € ¥ | 7(s,s")} is
finite for all s € ¥. Then INV-CONTROL is complete
with respect to assertional validity in the language with
finite sequencing, but no fixpoints.

Proof sketch. The proof rests on the fact that if Player 2
has only finitely many moves from each position, then
Player 1 can win the invariance game on G if and only
if he can win the same game on every finite subgame of
G, for a suitable definition of subgame encodable as a
finite sequence. O

Response.

Theorem 4. Rule S-RESP-CONTROL is complete rel-
atively to assertional validities, i.e., if G £ (p —
(1%<>q), then there are assertions @1, ..., Qom, a well-
founded order (A, =), and a ranking function § : ¥ —
A—ezxpressible in the assertion language—such that the
premises of rule S-RESP-CONTROL can be proved from
state validities.

Proof. Assume that G E [J(p — (1) Cq).

We first want to find an expression win that char-
acterizes the states in which (1)<>¢ holds, i.e., from
which Player 1 has a strategy that allows him to force
the game to reach a g-state, and a list of expressions on
V and V', one for each T € 77, that characterize a mem-
oryless strategy that is winning for the game (1)< >q
on each state in Wj.

To this end, we consider a colored arena for the
game. We take the basic arena described in the first
part of this section and cut off all successors of ¢-
states, substituting them with self-loops. This will
ensure that ¢-states are winning and we do not look
beyond them. As a set of colors we choose the sup-
port of the Boolean algebra over the set of generators
{q}U{En(7), Tak(T) | 7 € JUC}. The coloring function
is the one described in the basic construction. With this

set of colors we can express the winning condition

\/ mnfn (Tak‘(r) U W(T)) =0

TeTJ

v \/ (infn Tak(t) = 0) A (infN En(T) # 0) (1)
TeC

Vinfng =10,

which characterizes the ability of Player 1 to achieve
{(1%»<>q in all fair computations. Notice that win-
ning condition (1) is in Rabin form. From results
in (Zielonka 1998) we know, then, that Player 1 has
a memoryless winning strategy from a set of states Wy,
while Players 2 and Scheduler win from Wy = V' \ W)
(they do not necessarily have a memoryless winning
strategy, only a finite memory one). Moreover, W and
the memoryless winning strategy can be expressed as
fixpoint formulas in the assertion language. Let win
be the formula characterizing W7. By hypothesis, all
G-reachable p-states satisfy win.

The next step is to construct an FTS, é, a restric-
tion of G where Player 1 only plays according to the
aforementioned winning strategy; we shall then apply
to G the completeness result of Pnueli (Manna & Pnueli
1989) for the verification of LTL response properties.

We build G by conjoining the transition relation for
each 7 € 7; with the expression for the memoryless win-
ning strategy, and making all G-reachable states initial
in G (reachability is expressible in the assertion lan-
guage, see (Manna & Pnueli 1989; 1995) for details).
The transitions for Player 2 and the fairness conditions
do not change. In this way all transitions for Player 1
become deterministic and G E [J(p — >q). Therefore,
by completeness of rule F-RESP of (Manna & Pnueli
1989), there exist a well-founded domain (A4, <), a rank-
ing function § : ¥ — A, and m assertions @1, ..., om
such that the following hold with respect to G:

p—=qVeo
{pind=al} T {qv(pAnd<a)
V(giNd Za)f
{pind=a}Ti{gV(pAG<a)}
If 7, € J,
i —qV En(T;)
IfTiGC,

G(C—7) FO(@:i — O(g v En(mi))),

where G(C — 7;) is the same as G, but with 7; taken out
of C and made unfair.

Now we can construct the objects we need for S-RESP-
CONTROL. The domain (4, <) and the ranking function
0 stay the same. We define ¢; to be @; A win. Let us
verify that, with these choices, the premises of S-RESP-
CONTROL hold in G. The first four control conditions
are easy, since their structure maps closely that of the

verification conditions for F-RESP. For the last one,
consider a compassionate 7; and a G-reachable ;-state
s, with §(s) = a. We prove that the same strategy f
above allows Player 1 to force the game into a gV (¢ A
§ < a)V (En(r:) A pi AN§ =< a)-state in G*. Consider
a continuation play o, starting from s and compatible
with f. Then ¢ is also a computation of G(C — 7;). If
there is a g¢-state in o, we are done. If there is none,
then all states must be p-states. If § eventually assumes
a value smaller than a, again we are done. Otherwise,
all states in o are ;-states. Hence o must eventually
reach a (¢ V En(r;))-state s’, and it must be the case
that s’ = a. O

